Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 23(1): 196, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109769

RESUMO

BACKGROUND: Non-coding genetic variants that influence gene transcription in pancreatic islets play a major role in the susceptibility to type 2 diabetes (T2D), and likely also contribute to type 1 diabetes (T1D) risk. For many loci, however, the mechanisms through which non-coding variants influence diabetes susceptibility are unknown. RESULTS: We examine splicing QTLs (sQTLs) in pancreatic islets from 399 human donors and observe that common genetic variation has a widespread influence on the splicing of genes with established roles in islet biology and diabetes. In parallel, we profile expression QTLs (eQTLs) and use transcriptome-wide association as well as genetic co-localization studies to assign islet sQTLs or eQTLs to T2D and T1D susceptibility signals, many of which lack candidate effector genes. This analysis reveals biologically plausible mechanisms, including the association of T2D with an sQTL that creates a nonsense isoform in ERO1B, a regulator of ER-stress and proinsulin biosynthesis. The expanded list of T2D risk effector genes reveals overrepresented pathways, including regulators of G-protein-mediated cAMP production. The analysis of sQTLs also reveals candidate effector genes for T1D susceptibility such as DCLRE1B, a senescence regulator, and lncRNA MEG3. CONCLUSIONS: These data expose widespread effects of common genetic variants on RNA splicing in pancreatic islets. The results support a role for splicing variation in diabetes susceptibility, and offer a new set of genetic targets with potential therapeutic benefit.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ilhotas Pancreáticas , RNA Longo não Codificante , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/genética , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Humanos , Ilhotas Pancreáticas/metabolismo , Proinsulina/genética , Proinsulina/metabolismo , Isoformas de Proteínas/genética , Splicing de RNA , RNA Longo não Codificante/metabolismo
2.
Nucleic Acids Res ; 49(19): 11005-11021, 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34648034

RESUMO

Cohesin exists in two variants containing STAG1 or STAG2. STAG2 is one of the most mutated genes in cancer and a major bladder tumor suppressor. Little is known about how its inactivation contributes to tumorigenesis. Here, we analyze the genomic distribution of STAG1 and STAG2 and perform STAG2 loss-of-function experiments using RT112 bladder cancer cells; we then analyze the genomic effects by integrating gene expression and chromatin interaction data. Functional compartmentalization exists between the cohesin complexes: cohesin-STAG2 displays a distinctive genomic distribution and mediates short and mid-ranged interactions that engage genes at higher frequency than those established by cohesin-STAG1. STAG2 knockdown results in down-regulation of the luminal urothelial signature and up-regulation of the basal transcriptional program, mirroring differences between STAG2-high and STAG2-low human bladder tumors. This is accompanied by rewiring of DNA contacts within topological domains, while compartments and domain boundaries remain refractive. Contacts lost upon depletion of STAG2 are assortative, preferentially occur within silent chromatin domains, and are associated with de-repression of lineage-specifying genes. Our findings indicate that STAG2 participates in the DNA looping that keeps the basal transcriptional program silent and thus sustains the luminal program. This mechanism may contribute to the tumor suppressor function of STAG2 in the urothelium.


Assuntos
Proteínas de Ciclo Celular/genética , Cromatina/química , Mutação com Perda de Função , Proteínas Nucleares/genética , Transcrição Gênica , Neoplasias da Bexiga Urinária/genética , Sequência de Bases , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Células HEK293 , Histonas/genética , Histonas/metabolismo , Humanos , Anotação de Sequência Molecular , Proteínas Nucleares/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Neoplasias da Bexiga Urinária/metabolismo , Neoplasias da Bexiga Urinária/patologia
3.
F1000Res ; 9: 1336, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34745570

RESUMO

The COVID-19 pandemic has posed and is continuously posing enormous societal and health challenges worldwide. The research community has mobilized to develop novel projects to find a cure or a vaccine, as well as to contribute to mass testing, which has been a critical measure to contain the infection in several countries. Through this article, we share our experiences and learnings as a group of volunteers at the Centre for Genomic Regulation (CRG) in Barcelona, Spain. As members of the ORFEU project, an initiative by the Government of Catalonia to achieve mass testing of people at risk and contain the epidemic in Spain, we share our motivations, challenges and the key lessons learnt, which we feel will help better prepare the global society to address similar situations in the future.


Assuntos
COVID-19 , Teste para COVID-19 , Genômica , Humanos , Pandemias , SARS-CoV-2 , Voluntários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...